Intensidade das riscas de difração

$$I_{hkl} = L_P M_{hkl} C [F_{hkl}]^2$$

- Lp Produto dos fatores de Lorentz L(θ) e de polarização P(θ) (factores instrumentais)
- M_{hkl} Multiplicidade das riscas de difração
- C Constante experimental relacionada com a absorção, fluorescência e defeitos cristalinos.
- F_{hkl} Factor de estrutura para a reflexão *hkl* tem em conta os efeitos do motivo na intensidade da difração do plano *hkl*.

Factor Estrutura

$$F_{hkl} = \sum_{n=1}^{N} f_n(\theta) \exp\left[2\pi i \left(hx_n + ky_n + lz_n\right)\right] FT_n(\theta)$$

 $f_{\rm n}$ – factor de difusão atómico do átomo n para o ângulo de difração θ

 x_n , y_n , z_n – coordenadas de posição do átomo n

 hkl – índices de Miller para a reflexão do conjunto de planos com índices hkl

N – nº de átomos da célula unitária

 $FTn(\theta)$ – factor temperatura faz variar a I: as amplitudes das vibrações aumentam com a T

Factor Estrutura

$$F_{hkl} = \sum_{n=1}^{N} f_n(\theta) \exp\left[2\pi i \left(hx_n + ky_n + lz_n\right)\right] FT_n(\theta)$$

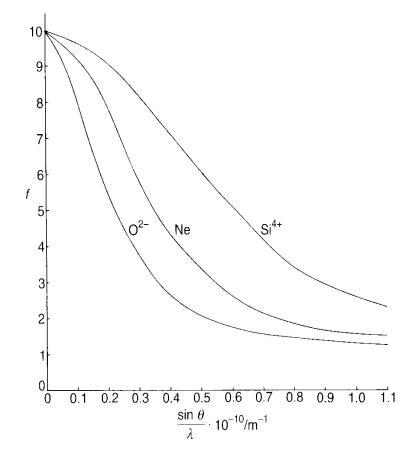
*F*_{hkl} é independente:

- Forma
- Tamanho da célula unitária.

Intensidade difratada depende:

- Coordenadas atómicas
- Factor difusão

$$I_{\rm hkl} \propto [F_{\rm hkl}]^2$$


Factor difusão atómico

O e- é um centro difusor do feixe de raios-X, as ondas difundidas pelos e- recombinam-se.

 f_n depende do n° de eletrões e de sen θ / λ

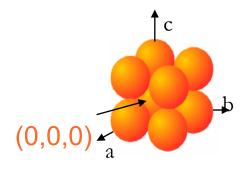
 f_n de átomos próximos são semelhantes, pelo que é difícil distingui-los por DRX

$$F_{hkl} = 0$$

$$I_{hkl} = 0$$

Ausências sistemáticas

(interferência destrutiva total)


Idênticas para todos os sistemas cristalinos (depende somente do tipo de rede)

Fórmula de Euler: $e^{ix} = \cos x + i \operatorname{sen} x$

$$F_{hkl} = \sum_{n=1}^{N} f_n \cos 2\pi \left(hx_n + ky_n + lz_n \right) + \sum_{n=1}^{N} f_n i sen 2\pi \left(hx_n + ky_n + lz_n \right)$$

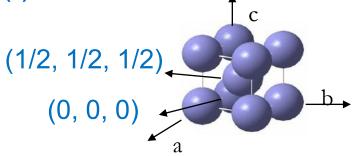
Estrutura cúbica primitiva (P)

1 átomo/célula unitária

$$F_{hkl} = \sum_{n=1}^{N} f_n \cos 2\pi (hx_n + ky_n + lz_n) + \sum_{n=1}^{N} f_n i sen 2\pi (hx_n + ky_n + lz_n)$$

$$F_{hkl} = f \cos 2\pi(\theta) + f i sen 2\pi(\theta) = f$$

$$F_{hkl} = f$$

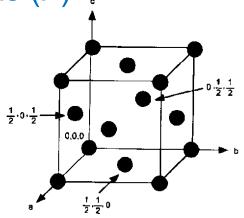

O factor de estrutura F_{hkl} é independente de *hkl*

Todas as reflexões são permitidas numa estrutura P

Estrutura cúbica corpo centrado (1)

2 átomos/célula unitária

$$F_{hkl} = f\cos 2\pi(0) + fisen2\pi(0) + f\cos 2\pi\left(\frac{h}{2} + \frac{k}{2} + \frac{l}{2}\right) + fisen2\pi\left(\frac{h}{2} + \frac{k}{2} + \frac{l}{2}\right)$$


$$F_{hkl} = f + f \cos \pi (h + k + l)$$

Se (h+k+l) = 2n, $F_{hkl} = 2f \implies Reflexões permitidas$

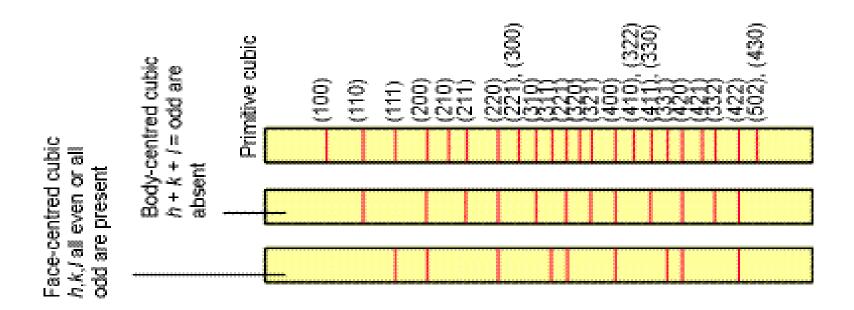
Se (h+k+l) = 2n+1, $F_{hkl} = 0 \implies$ Reflexões proibidas

Estrutura cúbica faces centradas (F)

4 átomos/célula unitária

$$F_{hkl} = f + f \cos \pi (h+k) + f \cos \pi (h+l) + f \cos \pi (k+l)$$

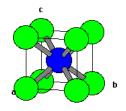
hkl - mesma paridade: F_{hkl} = 4f, reflexões permitidas


hkl - não têm a mesma paridade: F_{hkl} = 0, reflexões proibidas

$$[F_{hkl}]^2 = \begin{cases} 16 f^2 & \longrightarrow & (111)(200)(220)... \\ 0 & \longrightarrow & (100)(110)(210)... \end{cases}$$

Condições de reflexão e ausências sistemáticas vs tipo de rede

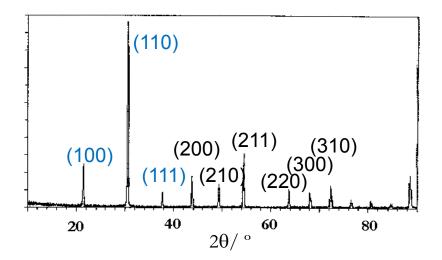
(hkl)	Malha Primitiva (P)	Corpo centrado (I) h + k + I = 2n	Faces centradas (F) h, k, I
			mesma paridade
100	✓	×	×
110	✓	✓	×
111	✓	×	✓
200	✓	✓	✓
210	~	×	×
211	✓	~	×
220	✓	✓	✓
221/300	✓	×	×
310	✓	✓	×
311	✓	×	✓
222	✓	✓	✓
320	✓	×	×
321	~	✓	×

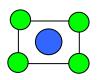

Ausências sistemáticas vs tipo de rede

Para um dado sistema o nº de riscas de difração diminui da malha *P* para a malha *F*

Exemplos:

1. Cloreto de césio




P a = 4.12 Å
2 iões/célula

Plano (100)

$$M_{100} = 6$$

1 Cl⁻

Plano (110) Risca + intensa

$$M_{110} = 12$$

1 Cl⁻ + 1 Cs⁺

Plano (111)

$$M_{111} = 8$$
 0.5 Cl⁻

Não esquecer a variação do fator difusão com θ

$F_{\rm hkl}$ para as 6 primeiras riscas de difração para CsCl

Posições atómicas: CI (0,0,0) Cs (1/2, 1/2, 1/2)

$$F_{hkl} = \sum_{n=1}^{N} f_n \cos 2\pi (hx_n + ky_n + lz_n) + \sum_{n=1}^{N} f_n isen 2\pi (hx_n + ky_n + lz_n)$$

$$F_{hkl} = f_{Cl-}\cos 2\pi(0) + f_{Cs+}\cos \pi(h+k+l) + 0$$

• Se (h+k+l) = 2n+1
$$\Rightarrow$$
 $F_{hkl} = f_{Cl-} - f_{Cs+}$ • Se (h+k+l) = 2n =

• Se (h+k+l) = 2n
$$\Rightarrow F_{hkl} = f_{Cl-} + f_{Cs+}$$

$$\Rightarrow F_{100} = f_{Cl-} - f_{Cs+}$$

$$\Rightarrow F_{III} = f_{CI-} - f_{Cs+}$$

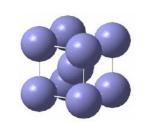
$$\Rightarrow F_{210} = f_{Cl-} - f_{Cs+}$$

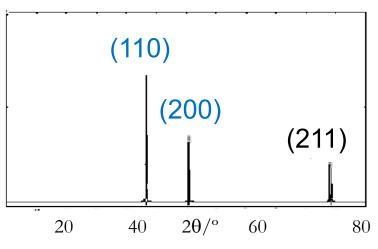
$$\Rightarrow F_{110} = f_{Cl-} + f_{Cs+}$$

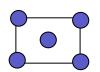
$$\Rightarrow F_{200} = f_{Cl-} + f_{Cs+}$$

$$\Rightarrow F_{211} = f_{Cl-} + f_{Cs+}$$

$$(100)(111)(210)...$$
 $F_{hkl}^2 = (f_{Cl}^2 - f_{Cs+}^2)^2$


$$[F_{hkl}]^2 = (f_{Cl}^- - f_{Cs+}^-)^2$$


$$[F_{hkl}]^2 = (f_{Cl}^- + f_{Cs+})^2$$


2. Ferro- α

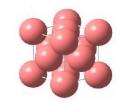
I; a = 2.867 Å2 átomos/célula

Posições atómicas: (0, 0, 0) (1/2,1/2,1/2)

1 Fe

$$F_{hkl} = f + f \cos \pi (h + k + l)$$

Se (h+k+l) = 2n
$$F_{hkl} = f + f = 2f_{Fe}$$


Se (h+k+l) = 2n+1
$$F_{hkl} = f - f = 0$$

3. Cobre

$$F$$
; $a = 3.615 \text{ Å}$

4 átomos/célula

Posições atómicas: (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)

Verificar que $F_{100} = F_{110} = 0$

$$F_{hkl} = f + f \cos \pi (h+k) + f \cos \pi (h+l) + f \cos \pi (k+l)$$

Fazer os exercícios de 9 a 11 da 2ª série